Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann Clin Lab Sci ; 52(6): 871-879, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2168913

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses are contagious respiratory pathogens with similar symptoms but require different treatment and management strategies. This study investigated the differences in laboratory test result profiles between SARS-CoV-2 and influenza infected patients upon presentation to emergency department (ED). METHODS: Laboratory test results and demographic information from 723 influenza positive (2018/1/1 to 2020/3/15) and 1,281 SARS-CoV-2 positive (2020/3/11 to 2020/6/30) ED patients were retrospectively analyzed. The dataset was randomly divided into a training/validation set (2/3) and a test set (1/3) with the same SARS-CoV-2/influenza ratio. Four machine learning models in differentiating the laboratory profiles of RT-PCR confirmed SARS-CoV-2 and influenza positive patients were evaluated. The Shapley Additive Explanations technique was employed to visualize the impact of laboratory tests on the overall differentiation. Furthermore, the model performance was also evaluated in a new test dataset including 519 SARS-CoV-2 ED patients (2020/12/1 to 2021/2/28) and the previous influenza positive patients (2018/1/1 to 2020/3/15). RESULTS: A laboratory test result profile consisting of 15 blood tests, together with patient age, gender, and race can discriminate the two types of viral infections using a random forest (RF) model. The RF model achieved an area under the receiver operating characteristic curve (AUC) of 0.90 in the test set. Among the profile of 15 laboratory tests, the serum total calcium level exhibited the greatest contribution to the overall differentiation. Furthermore, the model achieved an AUC of 0.81 in a new test set. CONCLUSION: We developed a laboratory tests-based RF model differentiating SARS-CoV-2 from influenza, which may be useful for the preparedness of overlapping COVID-19 resurgence and future seasonal influenza.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Influenza, Human/diagnosis , Retrospective Studies , Clinical Laboratory Techniques/methods
2.
Particuology ; 2022.
Article in English | ScienceDirect | ID: covidwho-2086615

ABSTRACT

To investigate the effect of COVID-19 control measures on aerosol chemistry, the chemical compositions, mixing states, and formation mechanisms of carbonaceous particles in the urban atmosphere of Liaocheng in the North China Plain (NCP) were compared before and during the pandemic using a single particle aerosol mass spectrometry (SPAMS). The results showed that the concentrations of five air pollutants including PM2.5, PM10, SO2, NO2, and CO decreased by 41.2%–71.5% during the pandemic compared to those before the pandemic, whereas O3 increased by 1.3 times during the pandemic because of the depressed titration of O3 and more favorable meteorological conditions. The count and percentage contribution of carbonaceous particles in the total detected particles were lower during the pandemic than those before the pandemic. The carbonaceous particles were dominated by elemental and organic carbon (ECOC, 35.9%), followed by elemental carbon-aged (EC-aged, 19.6%) and organic carbon-fresh (OC-fresh, 13.5%) before the pandemic, while EC-aged (25.3%), ECOC (17.9%), and secondary ions-rich (SEC, 17.8%) became the predominant species during the pandemic. The carbonaceous particle sizes during the pandemic showed a broader distribution than that before the pandemic, due to the condensation and coagulation of carbonaceous particles in the aging processes. The relative aerosol acidity (Rra) was smaller before the pandemic than that during the pandemic, indicating the more acidic particle aerosol during the pandemic closely related to the secondary species and relative humidity (RH). More than 95.0% and 86.0% of carbonaceous particles in the whole period were internally mixed with nitrate and sulfate, implying that most of the carbonaceous particles were associated with secondary oxidation during their formation processes. The diurnal variations of oxalate particles and correlation analyses suggested that oxalate particles before the pandemic were derived from aqueous oxidation driven by RH and liquid water content (LWC), while oxalate particles during the pandemic were originated from O3-dominated photochemical oxidation.

3.
Environ Pollut ; 289: 117887, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1330804

ABSTRACT

The Chinese government issued an unprecedentedly strict lockdown policy to control the spread of the novel coronavirus disease 2019 (COVID-19), significantly mitigating air pollution because of the dramatic reduction of industrial and traffic emissions. To explore the impact of COVID-19 lockdown (LCD) on organic aerosols, the mixing states and evolution processes of amine-containing particles were studied using a single particle aerosol mass spectrometer from January to March 2020 in Liaocheng, which is a seriously polluted city in North China. The counts and percentages of amine-containing particles in total obtained particles during the pre-LCD (547832, 29.8 %) were higher than those during the LCD (283983, 20.7 %) and post-LCD (102026, 18.4 %), mainly due to the reduced emission strength of amines and suppressed gas-to-particle partitioning of amines during the LCD and post-LCD. 74(C2H5)2NH2+ was the most abundant amine marker, which accounted for 98.2 %, 98.4 %, and 96.7 % of all amine-containing particles during the pre-LCD, LCD, and post-LCD, respectively. Correlation analysis and temporal variations indicated that the gas-to-particle partitioning of amines was facilitated by the stronger acidic environment and lower temperature, while the effect of RH and aerosol liquid water content was minor. The A-OC particles were the most abundant type (accounting for ~40 %) throughout the observation period. The temporal profiles and correlation analysis suggested that the impact of the increased O3 on the amines and their oxidation products (e.g., trimethylamine oxide) was minor. The identified particle types, correlation analysis, and the potential source contribution function results implied that the amine-containing particles were mainly derived from local and surrounding sources during the LCD, while those were mainly affected by long-range transport during the pre-LCD and post-LCD. Our results could deepen the comprehension of the sources and atmospheric processing of amines in the urban area of North China during the COVID-19 outbreak.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Amines , Atmosphere , China , Communicable Disease Control , Disease Outbreaks , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
4.
Sci Total Environ ; 758: 143709, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-922133

ABSTRACT

To eliminate the spread of a novel coronavirus breaking out in the end of 2019 (COVID-19), the Chinese government has implemented a nationwide lockdown policy after the Chinese lunar New Year of 2020, resulting in a sharp reduction in air pollutant emissions. To investigate the impact of the lockdown on aerosol chemistry, the number fraction, size distribution and formation process of oxalic acid (C2) containing particles and its precursors were studied using a single particle aerosol mass spectrometer (SPAMS) at the urban site of Liaocheng in the North China Plain (NCP). Our results showed that five air pollutants (i.e., PM2.5, PM10, SO2, NO2, and CO) decreased by 30.0-59.8% during the lockdown compared to those before the lockdown, while O3 increased by 63.9% during the lockdown mainly due to the inefficient titration effect of O3 via NO reduction. The increased O3 concentration can boost the atmospheric oxidizing capacity and further enhance the formation of secondary organic aerosols, thereby significantly enhancing the C2 particles and its precursors as observed during the lockdown. Before the lockdown, C2 particles were significantly originated from biomass burning emissions and their subsequent aqueous-phase oxidation. The hourly variation patterns and correlation analysis before the lockdown suggested that relative humidity (RH) and aerosol liquid water content (ALWC) played a key role in the formation of C2 particles and the increased aerosol acidity can promote the conversion of precursors such as glyoxal (Gly) and methyglyoxal (mGly) into C2 particles in the aqueous phase. RH and ALWC decreased sharply but O3 concentration and solar radiation increased remarkably during the lockdown, the O3-dominated photochemical pathways played an important role in the formation of C2 particles in which aerosol acidity was ineffective. Our study indicated that air pollution treatment sponges on a joint-control and balanced strategy for controlling numerous pollutants.


Subject(s)
Air Pollutants , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , Photochemical Processes , SARS-CoV-2
5.
Aerosol and Air Quality Research ; 20(8):1716-1726, 2020.
Article in English | Airiti Library | ID: covidwho-709515

ABSTRACT

The COVID-19 event triggered global attention which broke out at the end of 2019. To investigate the impact of the COVID-19 pandemic prevention and control actions on the chemical composition, size distribution, and mixing state of individual particles, real-time individual particles in the urban atmosphere of the Northern China were analyzed using single particle aerosol mass spectrometry (SPAMS) during January 16 to February 4, 2020. The results showed that the concentrations of PM_(2.5), NO_x, and CO were lower during DP (during the pandemic) than those during BP (before the pandemic), while O_3 concentration increased by about 40.9% during DP due to a lower concentration of NO_2 restrainting the decomposition of O_3 via the reation of NO with O_3. The number count of carbonaceous particles during DP decreased by 20.2% compared to that during BP due to the sharp reduction of factory production and vehicular transportation during DP. Dust particles during DP exhibited weaker

SELECTION OF CITATIONS
SEARCH DETAIL